1. 首页 > 游戏

数学立体几何图形基础从哪里学起? 高中数学立体几何怎么学

数学立体几何图形基础从哪里学起?高中数学立体几何怎么学

高中数学立体几何怎么学

高中的几何其实也不是很难,想学好,那你必须掌握方法:

数学不是靠背的,你可以将他与生活联系起来!当然,简单的几个公式你还是需要记住的

公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3: 过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

只要记住上面几条,多加应用,找点针对性强的题目做,很快就能补回来,加油哦!

立体几何学习方法

立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。立体几何是中学数学的一个难点,学生普遍反映“几何比代数难学”。但很多学好这部分的同学,又觉得这部分很简单。

我这里只是从大的方面讨论学习方法。

一.空间想象能力的提高。

开始学习的时候,首先要多看简单的立体几何题目,不能从难题入手。自己动手画一些立体几何的图形,比如教材上的习题,辅导书上的练习题,不看原图,自己先画。画出来的图形很可能和给出的图不一样,这是好事,再对比一下,那个图更容易解题。

二.逻辑思维能力的培养。

培养逻辑思维能力,首先是牢固掌握数学的基础知识,其次掌握必要的逻辑知识和逻辑思维。

1.加强对基本概念理解。

数学概念是数学知识体系的两大组成部分之一,理解与掌握数学概念是学好数学,提高数学能力的关键。

对于基本概念的理解,首先要多想。比如对异面直线的理解,两条直线不在同一个平面是简单的定义,如何才能不在同一个平面呢,第一是把同一个[平面上的直线离开这个平面,或者用两支笔来比划,这样直观上有了异面直线的概念,然后想在数学上怎么才能保证两条直线不在一个平面,那些条件能保证两条直线不在一个平面。我们多去想想,就可以知道,只要直线不平行,并且不相交,那么就异面,对于不平行的条件,在平面几何中我们已经知道,如何能保证不相交呢,想象延长线等手段能不能得到证明呢,如果不能,那么把其中一条直线放在一个平面,看另外一条直线和这个平面是否平行,这样我们对异面直线的概念就比较容易掌握。

这在立体几何“简单几何体”部分的学习中显得尤为突出,本章节中涉及大量的基本概念,掌握概念的合理性,严谨性,辨析相近易混的概念。如:正四面体与正三棱锥、长方体与直平行六面体、轴截面与直截面、球面与球等概念的区别和联系。

2.加强对数学命题理解,学会灵活运用数学命题解决问题。

对数学的公理,定理的理解和应用,突出反映在题目的证明和计算上。需要避免证明中出现逻辑推理不严密,运用定理、公理、法则时言非有据,或以主观臆断代替严密的科学论证,书写格式不合理,层次不清,数学符号语言使用不当,不合乎习惯等。

(1)重视定理本身的证明。我们知道,定理本身的证明思路具有示范性,典型性,它体现了基本的逻辑推理知识和基本的证明思想的培养,以及规范的书写格式的养成。做到不仅会分析定理的条件和结论,而且能掌握定理的内容,证明的思想方法,适用范围和表达形式.特别是进入高中学习以后所涉及到的一些新的证题的思想方法,如新教材上的立体几何例题:“过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.”此定理的证明就采用了反证法,那么反证法的证题思想就需要去体会,一般步骤,书写格式,注意要点等.并配以适当的训练,以初步掌握应用反证法证明立体几何题.

(2) 提高应用定理分析问题和解决问题的能力.这常常体现在遇到一个几何题以后,不知从何下手.对于习题,我们首先需要知道:要干什么(要求的结论是什么),那些条件能满足要求,这样一步一步往前找条件。当然这要根据具体情况,需要多看习题,我反对题海,但必要的练习是不可以缺少的。

高中立体几何怎么学好。如何学?

第一次在网上有人找我帮忙,真爽啊。

这个问题不是一句两句说得清楚的。我只能根据我的亲身体验来谈谈。

首先,可以说需要一定天赋。我四岁起就开始学画画学到了高一(由于学业紧张,我也没想当艺术生,所以就放下了),所以对图形这方面一直都比较敏感,这从初中的平面几何到高中的自然地理部分,再到数学的立体几何中间就显示出来了。基本上一些简单的立体几何图形一眼就能看出端倪(有时候替补本身给的图形不标准或是不方便看,比如说你画的那个,就自己再画一个自己觉得方便自己看的)。

其次,要有自我归纳能力。我虽然立体几何可以做到基本不错,但是也不能保证一开始就速度很快,这就需要你归纳题型。你有错题集吗?要是有的话可以自己把以往错的题多翻一翻,再小结一下(当时我们老师是把这个当作业,硬性规定我们做的,但是做了之后确实感觉到有效果),比如说证明的题目,求长度、面积、体积的题目,确定位置的题目等,说来说去也就那么几种,把经常错的题型多做几遍,熟练之后会发现基本上解题步骤都是差不多的。

再者,要学会分解、合并图形。在很多时候,一个题目上的图是不方便画很多辅助线的,而且有时候直接在立体图形上画会发生变形,不容易看清一些相似、垂直之类的东西,所以你可以试着把立体图形中的平面图形取出来(单独画一个或者几个),你会发现不需要花什么时间,也方便理清思路。

然后,需要学会推理,特别是反推。就拿你出的那道题目来说,要求证AM垂直于BA1,你就要想到证线线垂直有些什么方法,有在一个平面内证明两条线成90°、线面垂直等,一般来说基本上是可以用线面垂直的,所以再推是AM垂直于BA1所在的平面还是BA1垂直于AM所在的平面,多画几种情况,看哪一种情况是没有已知条件可以推翻的,就试试那个(基本上就是那个了),要是实在找不到花辅助线就试其他的方法,如空间直角坐标系(这个我们老师讲都不讲,他说我们学会那一种就够了,不过我出于好奇,就自学了,最后做题发现正如老师所说,空间直角坐标系不适用于我们,一是写起来麻烦,算起来也麻烦,还要记不少公式,还不如这种直接法,可以边写边想,更节约时间)。

最后,需要提醒你答题规范在立体几何中也是很重要的。很多人在高考上失分不是因为没有做出来,而是因规范上出了问题,所以在平常做作业的时候就要规范自己的书写。虽然后来我训练到不用草稿纸只在大脑里就能把基本步骤想出来的程度,但是我做立体几何的题目时,依旧会把重要的步骤写出来,不偷懒,比如利用线面垂直证线线垂直的时候,千万不要忘掉那条线属于那个平面这一步。

我现在能想到的就这么多了,打的好累啊。

绝对原创的,再追加点悬赏分吧。

高一必修2数学立体几何怎么学

别管什么左右脑,那都是扯淡,基础打好用脚丫子当脑袋也可以学得很好。高中几何不同于初中几何是因为高中加入了立体几何这个概念,必修二主要是把那几个公式用熟,几个定理用熟就好,不用死记,你记住了但不会用也白记,几何方法不一定适合每个人,高考一道几何大题,你不一定要用几何方法做,后面你会学到空间向量这个概念,可以用来解几何题,但你要把几何方法基础打好,题不一定要多做,主要是做了之后能理解,写基础题,高考难题不多,几何无非考的是面面关系,线面关系,线面关系,体积,面积,二面角。 其中体积、面积计算相对较少