y-(-1/k*x)=-(-1/k*x2)+y2 求X=? 抛物面z x2 y2被平面x y z 1
更新时间:2021-10-18 10:12:41 • 作者:COLLEEN •阅读 3291
- 计算:(x+y)*x2/x2-y2+y2/y-x
- x2-2xy+y2-1/x-y-1
- 已知两圆C1:x²+y²=1,C2:(x-2)²+(y-2)²=5,求经过点P(0,1)且被两圆截
- x2+y2 xy+x+y-1
计算:(x+y)*x2/x2-y2+y2/y-x
(x+y)*x^2/(x^2-y^2)+y^2/(y-x)
=(x+y)*x^2/(x-y)(x+y)-y^2/(x-y)
=x^2/(x-y)-y^2/(x-y)
=(x^2-y^2)/(x-y)
=(x-y)(x+y)/(x-y)
=x+y
x2-2xy+y2-1/x-y-1
x2-2xy+y2-1/x-y-1
=【(x-y)²-1】/(x-y-1)
=(x-y-1)(x-y+1)/(x-y-1)
=x-y+1
已知两圆C1:x²+y²=1,C2:(x-2)²+(y-2)²=5,求经过点P(0,1)且被两圆截
设直线的方程为:y=kx+1
C1:x²+y²=1,圆心(0,0)到直线的距离d1=1/根号(k^2+1),半径r1=1
弦长=2*根号[k^2/(k^2+1)]
C2:(x-2)²+(y-2)²=5,,圆心(2,2)到直线的距离d2=|2k-1|/根号(k^2+1),半径r2=根号5
弦长=2*根号[(k^2+4k+4)/(k^2+1)]
弦长相等
2*根号[k^2/(k^2+1)]=2*根号[(k^2+4k+4)/(k^2+1)]
k=-1
直线的方程
y=-x+1
x2+y2 xy+x+y-1
(x2+y2)-(xy+x+y-1)
=(1/2)*[(x^2-2xy+y^2)+(x^2-2x+1)+(y^2-2y+1)]
=(1/2)*[(x-y)^2+(x-1)^2+(y-1)^2]
因为(x-y)^2≥0,(x-1)^2≥0,(y-1)^2≥0
(三项都取=号,有解x=y=1)
所以
(x2+y2)-(xy+x+y-1)≥0
x^2+y^2≥xy+x+y-1