cos(π/3)的这个连根式展开公式怎么证明? cos7π诱导公式怎么求
- sin π/3 =根号3/2,怎么来的?怎么解?请给出详细过程,谢谢
- 分别计算:cosπ/3, cosπ/5cos2π/5, cosπ/7cos2π/7cos3π/7
- 3次根号下cos3x使用泰勒公式展开
- 已知cos=根号3/3求cos的值
sin π/3 =根号3/2,怎么来的?怎么解?请给出详细过程,谢谢
楼主你好,直角三角形满足勾股定理,设直角三角形勾为1,所以股为根号3,弦为2,sin60是正弦,对边比斜边,在本题中就是股比弦,也就是根号3比2,就是你说的根号3/2,回答完毕,希望楼主采纳,谢谢
分别计算:cosπ/3, cosπ/5cos2π/5, cosπ/7cos2π/7cos3π/7
1.cosπ/3=1/2
2.cosπ/5cos2π/5
=2sin(π/5)*cos(π/5)*cos(2π/5) / 2sin(π/5)
=sin(2π/5)*cos(2π/5) / 2sin(π/5)
=sin(4π/5) / 4sin(π/5)
=sin(π/5) / 4sin(π/5)
=1/4
3.cos(π/7)cos(2π/7)cos(3π/7)
=2sin(π/7)cos(π/7)cos(2π/7)cos(3π/7) / 2sin(π/7)
=sin(2π/7)cos(2π/7)(cos3π/7) / 2sin(π/7)
=sin(4π/7)cos(3π/7) / 4sin(π/7)
=sin(8π/7) / 8sin(π/7)
=sin(π/7) / 8sin(π/7)
=1/8
一般结论:
cos[π/(2n-1)]cos[2π/(2n-1)]……cos[nπ/(2n-1)]=1/(2^n)
证明:
cos[π/(2n-1)]cos[2π/(2n-1)]……cos[nπ/(2n-1)]
=2sin[π/(2n-1)]cos[π/(2n-1)]cos[2π/(2n-1)]……cos[nπ/(2n-1)] / 2sin[π/(2n-1)]
【分子分母补2sin[π/(2n-1)]】
=sin[2π/(2n-1)]cos[2π/(2n-1)]……cos[nπ/(2n-1)] / 2sin[π/(2n-1)]
=2sin[2π/(2n-1)]cos[2π/(2n-1)]……cos[nπ/(2n-1)] / 4sin[π/(2n-1)]
=sin[4π/(2n-1)]……cos[nπ/(2n-1)] / 4sin[π/(2n-1)]
=……
=2sin[nπ/(2n-1)]cos[nπ/(2n-1)] / (2^n)sin[π/(2n-1)]
=cos[2nπ/(2n-1)] / (2^n)sin[π/(2n-1)]
=sin[π/(2n-1)] / (2^n)sin[π/(2n-1)] 【cos[2nπ/(2n-1)] =sin[π/(2n-1)] 】
=1/(2^n)
重点:不断地利用二倍角公式:sin2θ=2sinθcosθ
希望采纳~~~~~~~~
3次根号下cos3x使用泰勒公式展开
照你的意思,(1+cosx/2)^a`=a(1+cosx/2)^(a-1)
不过你可以设t=cosx/2再用你的方法计算,之后记得用x代入t就行
已知cos=根号3/3求cos的值
1、cos(a+π/2)=-sina=(2√6)/5;
2、sin[π/2-(π/6+a)]=cos(π/3-a)=√3/3