1. 首页 > 科技

数学物理如图,这位老师说最终射出目镜进入人眼的光线是平行光。不是说

数学物理如图,这位老师说最终射出目镜进入人眼的光线是平行光。不是说

1.面对这位轮椅上的科学巨匠,女记者景仰之余,又不无悲悯地问。(改为肯定句)

1面对这位轮椅上的科学巨匠,女记者景仰之余又非常悲悯的问。

2姥姥说我差点把她的眼珠子按冒了。

望采纳。

一道物理竞赛题

答:2X

理由:光线在M1上入射角、反射角都为90—X,而这种反射形式从第一次后每反射n次入射角就会减小nX,所以此后第n次反射入射角可能为((90—X)—nX)而((90—X)—nX)要大于0,否则逆向角外射出,所以第一次反射射出光线至M2时,n=1,入射角=((90—X)—X)=90—2X,此时光线与M2的角即为射出光线与射入光线夹角=90—(90—2X)=2X。欢迎追问,谢谢采纳!

从数学角度解释进入潜望镜的光线为什么是平行的

证明:∵两面镜子是平行放置

∴∠2=∠3(两直线平行,内错角相等)

∵∠1=∠2, ∠3=∠4

∴∠1=∠2=∠3=∠4

∴180°-(∠1+∠2)=180°-(∠3+∠4)

既是红色和蓝色的夹角=蓝色和绿色的夹角

∴进入潜望镜的光线和离开潜望镜的光线平行(内错角相等,两直线平行)

发现了行星运动三定律,被称为天空立法者的是哪位科学家?

开普勒(Johannes Kepler,1571~1630)德国天文学家、光学家。1571年12月27日生于德国魏尔,父亲早年弃家出走,母亲脾气极坏。他是七个月的早产儿,从小体弱多病,四岁时的天花在脸上留下疤痕,猩红热使眼睛睛受损,高度近视,一只手半残,又瘦又矮。但他勤奋努力,智力过人,一直靠奖学金求学。1587年进人蒂宾根大学学习神学与数学。他是热心宣传哥白尼学说的天文学教授M。麦斯特林的得意门生,1591年取得硕士学位。1594年,应奥地利南部格拉兹的路德派高校之聘讲授数学。1600年被聘请到布拉格近郊的邦拉基堡天文台,任第谷的助手。1601年第谷去世后,开普勒继承了宫廷数学家的职位和第谷未完成的工作。1612年移居到奥地利的林茨,继续研究天文学。晚年生活极度贫困,1630年11月15日,年近花甲的他在索薪途中病逝于雷根斯堡。

开普勒在大学学习时就对托勒密和哥白尼体系进行了深人的对比研究,并力求进一步找出宇宙中当时已知的六大行星与太阳之间可以体现“数的和谐”的规律。1596年他的处女作《宇宙的神秘》出版,书中他利用正四面体、正方体、正八面体、正十二面体(12个五边形)、正二十面体(20个三角形)及六个球体嵌套起来,解释各行星的哥白尼轨道,其误差不超过5%。这一纯粹几何型的宇宙构想虽然没有实际意义,但他的数学才能和丰富的想象力,引起了第谷和伽利略的赞许。

开普勒对第谷交办的编制鲁道夫星表的任务,并不是机械地完成它,他自己在视力不强的条件下又做了不少观测工作,如1604年9月30日发现超新星爆发,并做了长达17个月的观测,他把这次观测结果写人了1606年发表的《蛇夫足下的新星》一文中.1607年观测到彗星即后来的哈雷彗星等,他将伽利略望远镜中的凹透镜目镜改为小凸透镜,后人称它为开普勒望远镜。1611年出版《屈光学》一书阐述望远镜理论,还清晰地引人了光线概念,研究了大气折射,提出了在小角度情况下折射角与入射角成正比,提出了光的照度定律、视觉理论等等,这些不仅有利于积累与核实观测资料,也是光学发展的重要收获,笛卡儿曾说:“开普勒是我主要的光学老师,胜过所有他人”。

他在天文学研究中面对着如何从大量观测资料中确定行星的准确几何轨道并找出用数学描述行星运动规律的问题。为此,首先要确定地球的真实运动轨道。他从太阳、地球、火星在一条直线上的时刻开始,经过687天火星绕日运行一周回到原处时,根据从地球上看到的太阳和火星的方向(相对于恒星这是可以知道的),就可以确定地球轨道上的一点。处理几组每隔687天测得的数据,就可以准确地确定地球轨道的形状。

在继续找寻火星的轨道时,他在一年半时间里经过70多次艰巨的思索、计算,按照“匀速圆周运动”的传统思路反复比较了托勒密、哥白尼、第谷的理论路径与第谷的实测数据,提出各种偏心圆形轨道的设想方案,但是最好的结果误差仍达8角分之多。而第谷的最大观测误差只有2角分。他把这次艰苦的计算愉快地比喻为“征服与战胜火星的战斗”,他说“这个诡计多端的敌人出乎意料地扯断了我用方程式制成的锁链”,使“我那些物理因素编成的部队倍受创伤”,它却“逃之夭夭。”这8角分之差便导致了天文学的革新。开普勒忠于实测数据,一丝不苟,以不屈不挠的精神,去找寻新的道路:只有放弃“圆形”“匀速”的传统观念,才能符合行星近日时快、远日时慢的观测事实。醒悟到这一点对开普勒是很不容易的,他用下面的话表达了他把数学定律引入物理学、天文学的艰辛过程:

“考虑和计算这件事差不多弄得我发疯。我实在不能明白为什么竟是椭圆?真是荒谬绝伦!难道解决直径的矛盾问题非得通过椭圆这条路不可吗?……通过推理得出的物理原则必须和经验相吻合,除了承认行星的轨道是完全椭圆之外别无它途。”

在上述工作的基础上,开普勒于1609年在《新天文学>一书中发表了他的第一、第二行星定律(椭圆轨道定律与等面积定律)。但他仍不满足于此而继续寻求各行星之间轨道参数的规律性,经过无数的试验——失败——再试验,在1619年出版的《宇宙的和谐》中他终于发现了第三定律(周期定律)。这样,简明的数学结论终于代替了过去的复杂体系模型,使哥白尼日心说取得了彻底的胜利。

开普勒通过数学规律和“鲁道夫星表”使宇宙体系获得了一个有序的图景。他还进一步寻求行星绕日体系的形成原因,提出磁力说。他在《哥白尼天文学概论》(1618~1621)一书中根据吉伯的地球是大磁体的观点,提出了自己的设想来解释行星绕日椭圆形轨道的物理原因:从太阳的“运动精灵”处发出轮辐式力线,由于太阳绕其轴自转,这些直的力线对各行星施加一种“推力”。每个行星犹如一块大磁体,其磁轴在空中运行时始终不变,即太阳排斥其中一极而又吸引另一极。他认为“重力是趋于结合或合并的同类物体之间的相互作用,类似于磁。”这些对于万有引力与重力的物理性质的早期思考,推动了万有引力的研究。

开普勒的一生迭遭病魔、贫穷、宗教冲突和战争的困扰。他是在苦难坎坷中努力奋斗终获成功的。开普勒奋斗的动力是他对天文学真实规律的执著追求和坚韧不拔克服种种困难的献身精神。第谷遗留给他的准确丰富的观测资料和他自己从无数次的失败中找到的正确方法给他提供了成功的条件。