为什么当神经纤维受到刺激时,细胞膜对钠离子的通透性会增加。刺激和钠离子通道的开合的关系?
- 为什么神经纤维收到刺激的时候细胞膜对Na+的通透性增大,造成Na+内流而产生局部电流
- 生物:为什么受到刺激时细胞膜对纳离子的通透性增加?
- 为什么受到刺激时,神经细胞的细胞膜通透性会变化
- 接受刺激时,细胞膜对钠离子 钾离子的通透性分别发生了什么变化?
为什么神经纤维收到刺激的时候细胞膜对Na+的通透性增大,造成Na+内流而产生局部电流
静息电位产生机制 静息电位指安静时存在于细胞两侧的外正内负的电位差。其形成原因是膜两侧离子分布不平衡及膜对K+有较高的通透能力。细胞内K+浓度和带负电的蛋白质浓度都大于细胞外(而细胞外Na+和Cl+浓度大于细胞内),但因为细胞膜只对K+有相对较高的通透性,K+顺浓度差由细胞内移到细胞外,而膜内带负电的蛋白质离子不能透出细胞,于是K+离子外移造成膜内变负而膜外变正。外正内负的状态一方面可随K+的外移而增加,另一方面,K+外移形成的外正内负将阻碍K+的外移(正负电荷互相吸引,而相同方向电荷则互相排斥)。最后达到一种K+外移(因浓度差) 和阻碍K+外移(正负电荷互相吸引,而相同方向电荷则相互排斥)。最后达到一种K+外移(因浓度差)和阻碍K+外移(因电位差)相平衡的状态,这是的膜电位称为K+平衡电位,实际上,就是(或接近于)安静时细胞膜外的电位差。 动作电位产生机制 能使Na+通道大量开放从而产生动作电位的临界膜电位。(或能使膜出现Na+内流与去极化形成负反馈的膜电位值)称为阈电位。在一定的刺激持续时间作用下,引起组织兴奋所必需的最小刺激强度,称为阈强度。比阈电位弱的刺激,成为阈下刺激,他们只能引起低于阈电位值的去极化,不能发展为动作电位。阈下刺激未能使静息电位的去极化达到阈电位,但他也能引起该段膜中所含Na+通道的少量开放,这是少量Na+内流造成的去极化和电刺激造成的去极化叠加起来,在受刺激的局部出现一个较小的去极化,成为局部兴奋或局部反应。其特点为:①它不是“全或无”的,在阈下刺激的范围内,随刺激强度的增大而增大,②不能在膜上作远距离的传播,但由于膜本身由于有电阻和电容特性而膜内外都是电解质溶液,发生在膜的某一点的局部兴奋,可以使邻近的膜也产生类似的去极化,但随距离加大而迅速减小以至消失,成为电紧张性扩布③局部兴奋可以互相叠加,当一处产生的局部兴奋由于电紧张性扩布致使临近处的膜也出现程度较小的去极化,而该处又因另一刺激也产生了局部兴奋,虽然两者单独出现时都不足以引起一次动作电位,但如果遇到一起时可以叠加起来,以致有可能达到阈电位引发一次动作电位,称为空间性总和。局部兴奋的叠加也可以发生在连续数个阈下刺激的膜的某一点,亦即当前面刺激引起的局部兴奋尚未消失时,与后面刺激引起的局部兴奋发生叠加,称为时间性总和。 在刺激超过阈强度后,动作电位的上升速度和所能达到的最大值,就不再依赖于所给刺激的强度大小了。即只要刺激达到足够的强度,再增加刺激强度并不能使动作电位的幅度有所增大。此外,动作电位并不是只出现在受刺激的局部,他在受刺激部位产生后,还可沿着细胞膜向周围传播,而且传播的距离并不因为原处刺激的强度而有所不同,直至整个细胞的膜都依次兴奋并产生一次同样大小和形式的动作电位。即动作电位的“全或无”现象。
生物:为什么受到刺激时细胞膜对纳离子的通透性增加?
神经细胞受到刺激后,钠离子通道开放,于是钠离子就从高浓度的细胞外进入低浓度的细胞内。这样的回答您满意吗
为什么受到刺激时,神经细胞的细胞膜通透性会变化
给神经纤维一个适当的刺激,产生动作电位,细胞传导兴奋,产生冲动。
产生动作电位是膜内外电位发生变化,这样才会有冲动产生。而电位变化主要由膜内外那些带电荷的离子浓度改变来实现。主要是钠离子和钾离子。
离子的跨膜转运都是由膜蛋白介导的。离子通道就是一类贯穿脂质双层、中央带有亲水孔道的膜蛋白,有离子选择性和门控两个基本特征,而这两个基本特征也是离子通道调控离子跨膜转运的基本机制。
在通道蛋白分子内有一些可移动的结构或者化学集团,在通道内起“闸门”的作用。
所谓“门控”,就是指一些因素刺激闸门运动,导致通道开放或者关闭的过程。说简单点也就差不多是让不让某种离子通过通道进出细胞。
离子通道通常分为:电压门控通道(受膜电位调控)、化学门控通道(受莫内或膜外化学物质调控)、机械门控通道(受机械刺激调控)。
所以说神经细胞受刺激的时候,细胞膜上这些让离子进出的通道也就受到刺激了,它们的开放状态也就会变化,所以通透性就改变咯。
接受刺激时,细胞膜对钠离子 钾离子的通透性分别发生了什么变化?
一、兴奋在神经纤维上产生和传导
科学家用枪乌贼的巨大神经纤维为材料,成功的测量了单个神经细胞内外的电位差及其变化的情况,证明了生物电存在的事实。这种膜内外的电位差称为膜电位。兴奋就是以电信号即神经冲动的形式在神经纤维上传导的。
1、神经冲动产生的生理基础
神经冲动的产生,是在神经细胞的细胞膜上纳—钾泵和离子通道的作用下,离子的跨膜运输,从而导致膜内外离子浓度的不同,引发膜电位的产生。
(1)、钠—钾泵:钠—钾泵实际上是细胞膜上的一种na+—k+atp酶。细胞内的钠离子可与该酶结合,并运出膜外,随之将钾离子从膜外运至膜内,在这一个过程要消耗atp,故此种运输方式为主动运输。每消耗一分子atp,向细胞膜内运输3个钾离子,排出2个钠离子。由于钠—钾泵不断的工作,从而导致细胞内液的钾离子浓度高于细胞外液,而钠离子则底于细胞外液,使细胞内外离子保持着一定的浓度差。
(2)、离子通道:是细胞膜上的专供离子进出细胞的一些跨膜蛋白质。离子通道上有闸门一样的开放和关闭的结构,控制离子的跨膜运动,使膜内外某些离子的浓度不同。常见的离子通道有钠离子通道和钾离子通道,当这些通道开启后,会有大量的钠离子或钾离子快速的通过通道进出细胞,此时,离子进出细胞不需要消耗atp,进出细胞的方式为协助扩散。
2、静息电位的产生
我们知道,na+主要存在于细胞外液而k+主要存在于细胞内液。当神经细胞未受到刺激即处于静息状态时,细胞膜上的钠离子通道关闭而钾离子的通道开放,故钾离子可从浓度高的膜内向低浓度的膜外运动。当膜外正电荷达到一定数量时就会阻止钾离子继续外流。此时,膜外带正电,膜内由于钾离子的减少而带负电。这种膜外正电膜内负电的电位称为静息电位。
3、动作电位的产生
当神经细胞受到一定的刺激即处于兴奋状态时,钠离子的通道会开放而钾离子的通道关闭,故钠离子可以从浓度高的膜外流向浓度底的膜内运动。当膜外的钠离子进入膜内的数量达到一定数量时就会阻止钠离子继续向膜内运动。此时,膜外由于钠离子的减少表现为负电位,膜内表现为正电位。这种外负内正的电位称为动作电位。动作电位是兴奋的最主要的表现形式。
4、动作电位的传导
当神经纤维上某一局部受到一定刺激产生动作电位后,邻近的未受刺激(未兴奋)部位仍为膜外正电位,膜内负电位。这样,在膜内和膜外的兴奋部位和未兴奋部位之间均会形成电位差,电位差的出现必然导致电荷的移动,而电荷的移动形成了局部电流。在膜内电荷由兴奋区向邻近的静息区流动,在膜外电荷由静息区流向兴奋区,这样就形成了局部电流的回路。局部电流回路的作用使邻近的静息区膜电位上升而产生动作电位,该动作电位又会按同样的方式影响与它邻近的区域产生局部电流回路,于是动作电位以局部电流的方式沿神经纤维传导。
5、静息电位的恢复
当兴奋部位刺激未兴奋部位产生动作电位后,则兴奋部位又恢复为静息电位。兴奋传导过后,原先兴奋部位的钠—钾泵活动增强,将内流的钠离子排出,同时将透出膜外的钾离子重新移入膜内,又形成了外正内负的静息电位。