1. 首页 > 科技

拓扑学 拓扑学读音

什么是拓扑学?

拓扑学是数学中一个重要的、基础性的分支.它最初是几何学的一个分支,主要研究几何图形在连续变形下保持不变的性质,现在已成为研究连续性现象的重要的数学分支.

拓扑学 拓扑学读音

拓扑学是什么?干什么用的?在计算机领域又有什么功能?

拓扑学2113(topology)是研究几何图形或空间在5261连续改变形状后还能保持不变的一些性质的学4102科.它只考虑物体间的位置关系1653而不考虑它们的形状和大小.在拓扑学里,重要的拓扑性质包括连通性与紧致性.拓扑学的用途:体现在它与其他数学分支、其他学科的相互作用.拓扑学在泛函分析、实分析、群论、微分几何、微分方程其他许多数学分支中都有广泛的应用.在计算机领域的功能:拓扑的特点是从表面现象抽象出其背后的数学结构.一个最简单的例子是计算机中常用的图论.拓扑学中有一条定理:任何一个群G都有一个图,使得这个图的基本群为G.还有就是你可以把图看成胞腔复形的一维骨架,这样的话代数拓扑的工具就可以使用了.

什么是拓扑学

拓扑学是数学中一个重要的、基础的分支.起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等变形,.

拓扑学 究竟是干什么的

在经济学方面,J.冯·诺伊曼首先把不动点定理用来证明均衡的存在性.在现代数理经济学中,对于经济的数学模型,均衡的存在性、性质、计算等根本问题都离不开代数拓扑学、微分拓扑学、大范围分析的工具.在系统理论、对策论、规划论、网络论中拓扑学也都有重要应用. 托姆以微分拓扑学中微分映射的奇点理论为基础创立了突变理论,为从量变到质变的转化提供各种数学模式.在物理学、化学、生物学、语言学等方面已有不少应用"欧拉的多面体公式与曲面的分类 ">欧拉的多面体公式与曲面的分欧拉发现, 除了通过各数学分支的间接的影响外,拓扑学的概念和方法对物理学(如液晶结构缺陷的分类)、化学(如分子的拓扑构形)、生物学(如DNA的环绕、拓扑异构酶)都有直接的应用.

简单的讲讲什么是拓扑学

拓扑学是19世纪发展起来的一个重要的几何分支.早在欧拉或更早的时代,就已有拓扑学的萌芽.著名的“哥尼斯七桥问题”以及“麦比乌斯丁的《拓扑学初步》.里斯丁.

拓扑学 是怎样的一门学科?

拓扑学拓扑学,是近代发展起来的一个研究连续性现象的数学分支.中文名称起源于希腊语Τοπολογ的音译.Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题.发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量. 拓扑学是数学中一个重要的、基础的分支.起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等变形,但不许割断和粘合);现在已发展成为研究连续性现象的数学分支

拓扑学具体是什么样的学科?

一门数学分支学科

拓扑学是个什么样的学科?

拓扑学,是近代发展起来的一个研究连续性现象的数学分支.中文名称起源于希腊语Τοπολογία的音译.Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究.

什么叫做拓扑学?

拓扑定义 举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形.但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化.在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变.例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数.这些就是拓扑学思考问题的出发点. 简单地说,拓扑就是研究有形的物体在连续变换下,怎样还能保持性质不变. baike.baidu/view/41881.htm

什么是拓扑学?

拓扑定义 举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形.但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化.在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变.例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数.这些就是拓扑学思考问题的出发点.