高温氧指数仪技术指标是什么? 氧指数测定仪原理
血氧仪的指标参照表是什么?
指夹式脉搏血氧仪的原理是基于动脉搏动期间光吸收量的变化。分别位于可见红光光谱(660纳米)和红外光谱(940纳米)的两个光源交替照射被测试区(一般为指尖或耳垂)。在这些脉动期间所吸收的光量与血液中的氧含量有关。微处理器计算所吸收的这两种光谱的比率,并将结果与存在存储器里的饱和度数值表进行比较,从而得出血氧饱和度。
氧指数测定仪适用于哪些材料氧指数的测定
氧指数测定仪是用于测材料燃烧性测试,同时也可以用于材料阻燃性测试,如纺织品,建材、泡沫塑料等都可以,氧指数测定仪有两类,分别针对不同的材料类型来介绍:
常温氧指数测定仪:
常温氧指数测定仪,适用于测定在规定的试验条件下,在氧气和氮气混合气体中刚好维持试样燃烧所需的最低氧气浓度(极限氧指数)。用于评定均质固体材料、层压材料、泡沫材料、软片和薄膜等在规定条件下的燃烧性能。另外,根据测试时温度的不同,我公司还提供高温氧指数测试仪(25-400℃)。
高温氧指数仪:
高温氧指数仪用来测试材料阻燃性能的仪器,检测材料在规定的试验条件下,在氧气和氮气混合气体中刚好维持试样燃烧所需的最低氧气浓度。高温氧指数仪适用于测试400℃以上材料的氧指数。另外,根据测试时温度的不同。(资料参考:标准集团)
氧疗的有效指标有哪些
氧疗有效的指标有:病人呼吸困难减轻、呼吸频率减慢、发绀减轻、心率减慢等。
由于新的氧疗技术的产生和氧疗方法的不断改进,不仅提高了氧疗效果,也给患者的使用带来了极大方便,使长期氧疗的应用更加广泛。长期氧疗在欧美和发达国家开展较为普遍,在亚洲及一些发展中国家由于受到社会经济发展水平的限制,开展较少。
我国关于COPD患者应用长期氧疗的情况,尚无确切统计数字.美国开展长期氧疗最为普遍,居世界领先地位,每10万COPD患者有241人应用长期氧疗。
扩展资料:
氧疗监护
1、防止交叉感染 给氧的导管、面罩、湿化瓶等定时清洁,消毒更换。
2、密切观察供氧效果 观察缺氧是否得到改善,如效果不佳应查找原因,如:装置是否通畅,是否存在通气、换气障碍。
3、密切观察血压及肢体末梢血液循环 血压下降可能系压力过高或通气量大。指(趾)甲、口唇、耳垂颜色变化可提示缺氧的改善状况。
4、注意安全 使用时应注意防火,使用氧气筒时要放稳,注意防震、防油,以免发生爆炸。
参考资料来源:百度百科-氧疗
红外测温仪的主要技术参数都有哪些?
红外测温技术在生产过程中,在产品质量控制和监测,设备在线故障诊断和安全保护以及节约能源等方面发挥了着重要作用。近20年来,非接触红外测温仪在技术上得到迅速发展,性能不断完善,功能不断增强,品种不断增多,适用范围也不断扩大,市场占有率逐年增长。比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。非接触红外测温仪包括便携式、在线式和扫描式三大系列,并备有各种选件和计算机软件,每一系列中又有各种型号及规格。在不同规格的各种型号测温仪中,正确选择红外测温仪型号对用户来说是十分重要的。
红外检测技术是“九五”国家科技成果重点推广项目,红外检测是一种在线监测(不停电)式高科技检测技术,它集光电成像技术、计算机技术、图像处理技术于一身,通过接收物体发出的红外线(红外辐射),将其热像显示在荧光屏上,从而准确判断物体表面的温度分布情况,具有准确、实时、快速等优点。任何物体由于其自身分子的运动,不停地向外辐射红外热能,从而在物体表面形成一定的温度场,俗称“热像”。红外诊断技术正是通过吸收这种红外辐射能量,测出设备表面的温度及温度场的分布,从而判断设备发热情况。目前应用红外诊技术的测试设备比较多,如红外测温仪、红外热电视、红外热像仪等等。像红外热电视、红外热像仪等设备利用热成像技术将这种看不见的“热像”转变成可见光图像,使测试效果直观,灵敏度高,能检测出设备细微的热状态变化,准确反映设备内部、外部的发热情况,可靠性高,对发现设备隐患非常有效。
红外诊断技术对电气设备在早期故障缺陷及绝缘性能做出可靠的预测,使传统电气设备的预防性试验维修(预防试验是50年代引进前苏联的标准)提高到预知状态检修,这也是现代电力企业发展的方向。特别是现在大机组、超高电压发展,对电力系统的可靠运行,关系到电网的稳定,提出了越来越高的要求。随着现代科学技术不断发展成熟与日益完善,利用红外状态监测和诊断技术具有远距离、不接触、不取样、不解体,又具有准确、快速、直观等特点,实时地在线监测和诊断电气设备大多数故障(几乎可以覆盖所有电气设备各种故障的检测)。它备受国内外电力行业的重视(国外70年代后期普遍应用的一种先进状态检修体制),并得到快速发展。红外检测技术的应用,对提高电气设备的可靠性与有效性,提高运行经济效益,降低维修成本都有很重要的意义。是目前在预知检修领域中普遍推广的一种很好手段,又能使维修水平和设备的健康水平上一个台阶。
采用红外成像检测技术可以对正在运行的设备进行非接触检测,拍摄其温度场的分布、测量任何部位的温度值,据此对各种外部及内部故障进行诊断,具有实时、遥测、直观和定量测温等优点,用来检测发电厂、变电所和输电线路的运转设备和带电设备非常方便、有效。
利用热像仪检测在线电气设备的方法是红外温度记录法。红外温度记录法是工业上用来无损探测,检测设备性能和掌握其运行状态的一项新技术。与传统的测温方式(如热电偶、不同熔点的蜡片等放置在被测物表面或体内)相比,热像仪可在一定距离内实时、定量、在线检测发热点的温度,通过扫描,还可以绘出设备在运行中的温度梯度热像图,而且灵敏度高,不受电磁场干扰,便于现场使用。它可以在-20℃~2000℃的宽量程内以0.05℃的高分辨率检测电气设备的热致故障,揭示出如导线接头或线夹发热,以及电气设备中的局部过热点等等。
带电设备的红外诊断技术是一门新兴的学科。它是利用带电设备的致热效应,采用专用设备获取从设备表面发出的红外辐射信息,进而判断设备状况和缺陷性质的一门综合技术。
2.红外基础理论
在1672年,人们发现太阳光(白光)是由各种颜色的光复合而成,同时,牛顿做出了单色光在性质上比白色光更简单的著名结论。使用分光棱镜就把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等各色单色光。1800年,英国物理学家F. W. 赫胥尔从热的观点来研究各种色光时,发现了红外线。他在研究各种色光的热量时,有意地把暗室的唯一的窗户用暗板堵住,并在板上开了一个矩形孔,孔内装一个分光棱镜。当太阳光通过棱镜时,便被分解为彩色光带,并用温度计去测量光带中不同颜色所含的热量。为了与环境温度进行比较,赫胥尔把它用在彩色光带附近放几支作为比较用的温度计来测定周围环境温度。试验中,他偶然发现一个奇怪的现象:放在光带红光外的一支温度计,比室内其他温度的批示数值高。经过反复试验,这个所谓热量最多的高温区,总是位于光带最边缘处红光的外面。于是他宣布太阳发出的辐射中除可见光线外,还有一种人眼看不见的“热线”,这种看不见的“热线”位于红色光外侧,叫做红外线。红外线是一种电磁波,具有与无线电波及可见光一样的本质,红外线的发现是人类对自然认识的一次飞跃,对研究、利用和发展红外技术领域开辟了一条全新的广阔道路。
红外线的波长在0.76~100μm之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。
温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。通过红外探测器将物体辐射的功率信号转换成电信号后,成像装置的输出信号就可以完全一一对应地模拟扫描物体表面温度的空间分布,经电子系统处理,传至显示屏上,得到与物体表面热分布相应的热像图。运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。