1. 首页 > 教育

高中数学花圈呢怎么来的?(高中数学,问号部分怎么配凑得来的?)

高中数学花圈呢怎么来的?(高中数学,问号部分怎么配凑得来的?)

高中数学,问号部分怎么配凑得来的?

配凑0是最容易的,要记住这一点。这个思考过程是比较直的方法,如果题目做得多了,会有经验,不需要这么直直的想。

高中数学中的茎叶图是怎么回事的?

茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。

  茎叶图有三列数:左边的一列数统计数,它是上(或下)向中心累积的值,中心的数(带括号)表示最多数组的个数;中间的一列表示茎,也就是变化不大的位数;右边的是数组中的变化位,它是按照一定的间隔将数组中的每个变化的数一一列出来,象一条枝上抽出的叶子一样,所以人们形象地叫它茎叶图。

  茎叶图是一个与直方图相类似的特殊工具,但又与直方图不同,茎叶图保留原始资料的资讯,直方图则失去原始资料的讯息。将茎叶图茎和叶逆时针方向旋转9O度,实际上就是一个直方图,可以从中统计出次数,计算出各数据段的频率或百分比。从而可以看出分布是否与正态分布或单峰偏态分布逼近。

  茎叶图在质量管理上用途与直方图差不多,但它通常是作为更细致的分析阶段使用。由于它是用数字组成直方图,所以在做的时候比直方图时,通常我们常使用专业的软件进行绘制。

  茎叶图的特征

  1、用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示。

  2、茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观、清晰。

  现在有一堆30个数据:

  41 52 6 19 92 10 40 55 60 75 22

  15 31 61 9 70 91 65 69 16 94 85

  89 79 57 46 1 24 71 5

  画出的茎叶图如下:

  0 | 1569

  1 | 0569

  2 | 24

  3 | 1

  4 | 016

  5 | 257

  6 | 0159

  7 | 0159

  8 | 59

  9 | 124

  比如第二行的数字如下:

  1 | 0569

  则代表数据集中有10,15,16,19四个数字

高中数学符号详细解释

∞ 无穷大

PI 圆周率

|x| 函数的绝对值

∪ 集合并

∩ 集合交

≥ 大于等于

≤ 小于等于

≡ 恒等于或同余

ln(x) 自然对数

lg(x) 以2为底的对数

log(x) 常用对数

floor(x) 上取整函数

ceil(x) 下取整函数

x mod y 求余数

{x} 小数部分 x - floor(x)

∫f(x)δx 不定积分

∫[a:b]f(x)δx a到b的定积分

[P] P为真等于1否则等于0

∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况

如:∑[n is prime][n < 10]f(n)

∑∑[1≤i≤j≤n]n^2

lim f(x) (x->?) 求极限

f(z) f关于z的m阶导函数

C(n:m) 组合数,n中取m

P(n:m) 排列数

m|n m整除n

m⊥n m与n互质

a ∈ A a属于集合A

#A 集合A中的元素个数

∑(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连加和,

如果f(n)是有结构式,f(n)应外引括号;

∑(n=p,q ; r=s,t)f(n,r) 表示 ∑(r=s,t)[∑(n=p,q)f(n,r)],

如果f(n,r)是有结构式,f(n,r)应外引括号;

∏(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连乘积,

如果f(n)是有结构式,f(n)应外引括号;

∏(n=p,q ; r=s,t)f(n,r) 表示 ∏(r=s,t)[∏(n=p,q)f(n,r)],

如果f(n,r)是有结构式,f(n,r)应外引括号;

lim(x→u)f(x) 表示 f(x) 的 x 趋向 u 时的极限,

如果f(x)是有结构式,f(x)应外引括号;

lim(y→v ; x→u)f(x,y) 表示 lim(y→v)[lim(x→u)f(x,y)],

如果f(x,y)是有结构式,f(x,y)应外引括号;

∫(a,b)f(x)dx 表示对 f(x) 从 x=a 至 x=b 的积分,

如果f(x)是有结构式,f(x)应外引括号;

∫(c,d ; a,b)f(x,y)dxdy 表示∫(c,d)[∫(a,b)f(x,y)dx]dy,

如果f(x,y)是有结构式,f(x,y)应外引括号;

∫(L)f(x,y)ds 表示 f(x,y) 在曲线 L 上的积分,

如果f(x,y)是有结构式,f(x,y)应外引括号;

∫∫(D)f(x,y,z)dσ 表示 f(x,y,z) 在曲面 D 上的积分,

如果f(x,y,z)是有结构式,f(x,y,z)应外引括号;

∮(L)f(x,y)ds 表示 f(x,y) 在闭曲线 L 上的积分,

如果f(x,y)是有结构式,f(x,y)应外引括号;

∮∮(D)f(x,y,z)dσ 表示 f(x,y,z) 在闭曲面 D 上的积分,

如果f(x,y)是有结构式,f(x,y)应外引括号;

∪(n=p,q)A(n) 表示n从p到q之A(n)的并集,

如果A(n)是有结构式,A(n)应外引括号;

∪(n=p,q ; r=s,t)A(n,r) 表示 ∪(r=s,t)[∪(n=p,q)A(n,r)],

如果A(n,r)是有结构式,A(n,r)应外引括号;

∩(n=p,q)A(n) 表示n从p到q逐步变化对A(n)的交集,

如果A(n)是有结构式,A(n)应外引括号;

∩(n=p,q ; r=s,t)A(n,r) 表示 ∩(r=s,t)[∩(n=p,q)A(n,r)],

如果A(n,r)是有结构式,A(n,r)应外引括号

高中数学,这个辅助角公式前面为什么是个负号?

asinx+bcosx=√(a²+b²)sin(x+z)

其中tanz=b/a

你去看高中的教科书

用这个公式有一个条件

即sinx的系数a>0

所以这里就要提取一个负号了